Homework 2

(Due date: February 6th @ 7:30 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (15 PTS)

Multiply the following signed fixed-point numbers (6 pts):

ridicipity the following signed fixed point humbers (o pas):							
01.101 ×	100.001 ×	110.000 ×					
1.101001	01.10001	10.10101					

• Get the division result (with x = 4 fractional bits) for the following signed fixed-point numbers:

······································		
101.0101 ÷	10.0101 ÷	1.1011 ÷
1.101	01.11	1.01101

PROBLEM 2 (11 PTS)

- We want to represent numbers between -512 and 511.9997. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0005? (4 pts).
- We want to represent numbers between -127.05 and 116.25. What is the fixed point format that requires the fewest number of bits for a resolution better or equal than 0.0015? (4 pts).
- Represent these numbers in Fixed Point Arithmetic (signed numbers). Select the minimum number of bits in each case.

 -129.625
 -69.1875
 113.3125

PROBLEM 3 (10 PTS)

• Complete the table for the following fixed point formats (signed numbers): (4 pts)

Fractional bits	Integer Bits	FX Format	Range	Dynamic Range (dB)	Resolution
9	3				
11	5				
15	9				

• Complete the table for these floating point formats (which resemble the IEEE-754 standard). Only consider ordinary numbers.

Exponent bits (E)	Significant bits (p)	Min	Мах	Range of e	Range of significand
8	6				
10	13				
15	32				

PROBLEM 4 (20 PTS)

• Calculate the decimal values of the following floating point numbers represented as hexadecimals. Show your procedure.

Single (32 bits)		Double (64 bits)				
✓	90DBD800	✓ 7F85B0AC	✓	DECAFC0FFEE80000	~	ACCEDE90BEAD5000
\checkmark	800BEEF0	✓ 70DECADE	✓	49A5DEAF8FAD8000	✓	8009BEBEFACE8000

PROBLEM 5 (44 PTS)

Calculate the result (provide the 32-bit result) of the following operations with 32-bit floating point numbers. Truncate the
results when required. When doing fixed-point division, use 8 fractional bits. Show your procedure.

✓	3DE38C80 + 3A80D980	✓ 80A18000 - 83CEC000	✓	7A09D300 × 4D080000	~	800C0000 ÷ 494C0000
✓	80123000 + 804E8000	✓ 09DECAF0 - 7AD90000	✓	90DECADE × FF800000	✓	7F800000 ÷ 800ABBAA
✓	7FEEFCA0 + FACADE90	✓ F0B1ABEE - 7F800000	\checkmark	0B09A000 × 8FACC000	✓	C9746000 ÷ 40490000